LIBRARY: Higher Symplectic Gravity

Author(s) Title References Year
Author(s) Title References Year
Bruno D., Cianci R., Vignolo S. A first-order purely frame formulation of General Relativity
Class.Quant.Grav. 22 4063-4070 arXiv:math-ph/0506077 2005
Bruno D., Cianci R., Vignolo S. General Relativity as a constrained Gauge Theory
Int.J.Geom.Meth.Mod.Phys. 3 (2006) 1493-1500arXiv:math-ph/0605059 2006
Pilc M. Covariant Quantum Gravity with Continuous Quantum Geometry I: Covariant Hamiltonian Framework
arXiv:1609.08021v1 2016
Esposito G., Gionti G., Stornaiolo C. Space-time covariant form of Ashtekar constraints
Nuovo Cim.B110:1137-1152,1995 arXiv:gr-qc/9506008 1995
Hélein F., Vey D.
Curved space-times by crystallization of liquid fiber bundles
Found. Phys. (2017) 47: 1, 1–41, doi:10.1007/s10701-016-0039-2 - arXiv:1508.07765 2017
Ibort A. and, Spivak A.
On A Covariant Hamiltonian Description of Palatini's Gravity on Manifolds with Boundary
arXiv:1605.03492 2016
Kanatchikov I.V.
De Donder-Weyl Hamiltonian formulation and precanonical quantization of vielbein gravity
J.Phys.: Conf. Ser. 442 012041 (2013) arXiv:1302.2610 2013
Kanatchikov I.V.
On precanonical quantization of gravity in spin connection variables
AIP Conf. Proc. 1514 (2012) 73-76 arXiv:1212.6963 2012
Kanatchikov I.V.
On the ‘spin connection foam’ picture of quantum gravity from precanonical quantization
Talk at the 14th Marcel Grossmann Meeting, Rome, 2015. arXiv:1512.09137 2013
Kanatchikov I.V.
On precanonical quantization of gravity
Nonlin. Phenom. Complex Sys. (NPCS) 17 (2014) 372-376 arXiv:1407.3101 2012
Kanatchikov I.V.
Ehrenfest Theorem in Precanonical Quantization of Fields and Gravity arXiv:1602.01083v1 2016
Nakajima S. Application of covariant analytic mechanics with differential forms to gravity with Dirac field EJTP 13, 95 (2016) arXiv:1510.09048v2 2016
Rovelli C., A note on the foundation of relativistic mechanics — II: Covariant Hamiltonian general relativity, arXiv:gr-qc/0202079 2002
Vey D. Multisymplectic Formulation of Vielbein Gravity I. De Donder-Weyl Formulation, Hamiltonian (n-1)-forms, Classical and Quantum Gravity 32 095005 arXiv:1404.3546v4 2015
Vey D. 10–plectic formulation of gravity and Cartan connections, hal-01408289v2 2016